MIS Fiber Web Poster

Payload designed to show that useful, high value goods can economically be produced in low earth orbit, opening the space frontier for Earth-focused manufacturing.

MOFFETT FIELD, CA. Made In Space, Inc. (Made In Space) and Thorlabs, Inc. (Thorlabs) will send a microgravity-optimized, miniature fiber drawing system to the International Space Station (ISS) to manufacture high-value-to-mass ZBLAN optical fiber via a cooperative agreement with The Center for Advancement of Science In Space (CASIS). The payload, called the “Made In Space Optical Fiber Production in Microgravity Experiment” (Fiber Payload) is currently scheduled to be launched to the ISS in the first quarter of 2017. The Fiber Payload will produce test quantities of  ZBLAN optical fiber in the persistent microgravity environment ISS provides, and be returned to the Earth shortly thereafter. Once returned to the Earth, the fiber will be tested and utilized. Based on the results from this initial experiment and market demand, Made In Space plans to develop and operate larger scale microgravity production facilities for ZBLAN and other microgravity enabled materials. “ZBLAN optical fiber was chosen as the initial material for experimental production because its value per kilogram is significantly higher than current launch costs, it has a strong existing terrestrial market, and research indicates that microgravity-manufactured ZBLAN can open large new markets as well as more effectively serve the current market,” says Andrew Rush, CEO of Made In Space, Inc.

Screen Shot 2016-07-14 at 8.53.54 AM

In order to produce the highest quality ZBLAN possible, Made In Space has entered into an exclusive development agreement with Thorlabs, the world leader in terrestrial production of ZBLAN, Indium Fluoride, and other exotic optical fibers. Thorlabs’ exotic optical fiber R&D  team is led by Dr. Mohammed Saad. “Dr. Saad’s team has done amazing work in improving the quality of terrestrially produced ZBLAN for more than a decade. It has been a joy working with them. The goal of this partnership is to combine our in-space manufacturing expertise with Thorlabs’ optical fiber expertise in order to rapidly develop microgravity-manufactured high quality fiber and introduce it into existing and new markets,” says Mr. Rush.

ZBLAN has much broader transmission spectrum and can theoretically offer significantly lower transmission losses than silica fiber, the type of optical fiber used in applications ranging from lasers, to transoceanic telecommunications, to delivering high speed internet. Terrestrially produced ZBLAN is currently used for fiber lasers, medical devices, and other near infrared applications. Due to gravity-induced imperfections in the crystal lattice, transmission losses are significant, preventing ZBLAN from being used more broadly. Research stretching back to NASA-led work in the early 1990’s indicates that manufacturing ZBLAN in a microgravity environment unlocks its commercial potential by reducing or eliminating these imperfections. Based on this research, Made In Space will attempt to pull at least one hundred meters of ZBLAN optical fiber in microgravity next year. If successful, current applications of ZBLAN will be improved and wider uses, such as long haul telecommunications, may be enabled. In the future, the technology used in the Fiber Payload may be used to produce other types of exotic fibers in microgravity, to produce fiber formulations that cannot be produced under a gravity field, as to produce rare-earth fibers doped at higher concentrations than currently possible on the ground.

Trends in Internet usage suggest that by the year 2020, there will be more than 50.1 billion devices online worldwide. These devices will be used by almost half of the world’s population and global Internet traffic is projected to top two zetabytes (two trillion gigabytes). This expansion of data transmission volume cannot be adequately served by current systems. Microgravity-produced optical fiber is a strong candidate for providing the necessary additional bandwidth.

“Historically, the commercial space industry has profited off of satellite telecommunications– sending ones and zeros back and forth. Made In Space’s in-space manufacturing activities expand the commercial envelope to making valuable goods there too.” Says Mr. Rush, “We believe in-space manufacturing of goods valuable to people on Earth will soon drive significant commercial activity in space, perhaps one day creating a space-based economic boom.”


MIS Fiber Process Infographic

Engage with Us

Co-Pilot the Revolution